From veneers to bridges: Zirconia reinforced composite

_Schütz Dental_ presents a new material combining high performance acrylics and zirconium dioxide. Tizian Zirconia Reinforced Composite blanks enable you to produce temporary restorations of up to 16 units and even lets you complete final restorations of up to 3 units. These restorations stand out thanks to their outstanding antagonist and TMJ friendly properties. These bionic qualities derive from the moderate Vickers hardness and corresponding elasticity module. Milling blanks (available in two heights) fit in the 98 millimeter open system holder and are suited to dry-milling.

This material (Fig. 1) is suitable to produce final restorations up to three-unit bridges. This bridges might even expand to the posterior region. This adds to its suitability for final crown structures as well as fully anatomical crowns, inlays, onlays and veneers. This material can also be used for implant cases and long-term temporaries for up to a whole arch and lasting for up to two years of wear (Figs. 2–3).

The elasticity module of this material is 3.050 MPa which is lower than the one of zirconium dioxide. This fact and the optional facing with composite prevents from any chipping.

If you’re looking for a veneering material for final restorations, the specially developed composite, dialog Occlusal from Schütz Dental, comes highly recommended. Cases which where faced with this composite make convincing results thanks to its fantastic translucence, homogeneity and plaque-resistance. Tizian Zirconia Reinforced Composite blanks come in a range of five tooth colours.

The chemical formula is free of TEGDMA and Bisphenol A. This makes the material biocompatible with a lot of potential for the future.

Thanks to the excellent physical properties, this material is ideal for use on patients with CMD or Bruxism (Fig. 4). When working on implants, the elasticity of the system works as a buffer. This reduces the pressure on the implants and the bone structure.

The chemical formula is free of TEGDMA and Bisphenol A. This makes the material biocompatible with a lot of potential for the future.